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Let W(x):=exp(-Q(x»,xelll, where Q(x) is even and continuous in Ill,
Q(O)=O and Q" is continuous in (0,00) with Q'(x»O in (0, w), and for some
A,B>I,

A ~ (xQ'(x»),/Q'(x) ~ B, xe(O, 00).

For example, Q(x):= Ixl" (X> 1 satisfies these hypotheses. Let an denote the nth
Mhaskar-Rahmanov-SalT number for Q, and

n;;.l, xelil.

Let I ~ P < w. We prove that for n;;. 1 and polynomials P of degree at most n,

This extends to L p the recent L", result of the authors, in which the essential feature
is the introduction of the factor <p;; 1/2. We also consider the case A ~ 1. The proofs
are necessarily different from previous methods of extending L oo inequalities to L p ,

and involve Carleson measures. ~, 1994 Academic Press. Inc.

1. INTRODUCTION AND RESULTS

Throughout ~ denotes the class of real polynomials of degree at most
n, and C, C I, C2' ... , denote positive constants independent of n, P E~ and
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X E IR. The same C does not necessarily represent the same constant in
different occurrences. We use - in the following sense: If {b n };~)~o and
{cn}:~ 0 are sequences of non-zero real numbers, we write

if there exist Cl' C2> 0 such that

n~ 1.

Similar notation is used for functions and sequences of functions.
The classical L p Markov-Bernstein inequality for [- 1, 1] involves the

factor

and for any 0 < p < 00, has the form

(1.1 )

The usefulness of such inequalities in approximation theory, discretisation
problems, quadrature and interpolation is well known.

There are many ways to proceed from the Let) version of (1.1) to the
general L p , P > 0 case. One of the most versatile is a technique adapted, in
spirit, from the large sieve of number theory, and involves L p Christoffel
functions: See [13, 2, 3, 11] for details of the method. That method, and all
others known to the authors, make essential use of the fact that uniformly
for x E ( - 1, 1) and n ~ 1,

In this paper, we present a new method, involving Carleson measures, to
prove L p Markov-Bernstein inequalities when this last relation fails. The
specific context in which we outline the method is L p Markov-Bernstein
inequalities for Freud weights.

Recall that if W:= e - Q, where Q: IR --+ IR is even and continuous in IR.,
and of smooth polynomial growth at infinity, then we call W a Freud
weight [17]. Associated with Q is the Mhaskar-Rahmanov--Saffnumber au
[14, 15, 19] the positive root of the equation

U>O. (1.2)
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It exists, for example, when xQ'(x) is increasing in (0, (0), with limits 0 and
00 at 0 and 00 respectively. Following is our main result:

THEOREM 1.1. Let W:= e - Q, where Q: IR --+ IR is even and continuous in
IR, Q(O) = 0, and Q" is continuous in (0, (0), Q'(x) is positive in (0, (0), and
for some A, B> 1,

Let

A ~ (xQ'(x))'jQ'(x) ~ B, XE (0, (0).

X E IR, n ~ 1.

(1.3)

(1.4 )

Let 1~ p < 00. Then there exists C> 0 such that for n ~ 1 and P E gJn,

Remarks. (a) Markov-Bernstein inequalities of the form

(1.5 )

, n
liP WilL (R)~ C-IIPWIIL (R),

P an P
(1.6)

have been widely studied and applied in the literature [1,4,5,7-9,17,18],
especially in relation to converse theorems of approximation. In fact, (1.6)
is a simple consequence of (1.5), since IQ'(x)1 =O(njan) for Ixl ~2an (see
(4.2), (4.3) below). Even (1.6) is new for the full generality of weights W
considered here, as previously additional conditions were required when in
( 1.3), 1 < A < 2.

However, the essential feature of the theorem is the insertion of the
factor <p;;1/2, which is large near an. For p= 00, the inequality (1.5) was
established in [9], and played an important role in establishing bounds for
the orthogonal polynomials for the weight W2 = e - 2Q [10]. We believe
that the p < co case will also have applications.

(b) Methods used to prove (1.6) for various weights in [4, 5, 8, 11]
include boundedness of dilated de la Vallee-Poussin sums, replacement of
the weight over a suitable interval by polynomials of degree O(n), or a
technique adapted from the large sieve of number theory. All attempts to
adapt these to the present situation failed, because they would require the
same inequality to hold for polynomials of degree 2n as for n (modulo a
constant). However, it is not true that

XE IR, n ~ 1,
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so (1.5) provides a different inequality for polynomials of degree ~ n as
compared to polynomials of degree ~ 2n.

Our method is given in Section 2: We adapt the complex and potential
theoric methods from [9J to obtain local estimates for (PW)' (x) in terms
of the average of IP(t)1 W([tl) on a semicircle centred on x and then
integrate: To return to the real line, we use a result about Carleson
measures.

(c) The restriction p ~ 1 is unfortunate but we have been unable to
find a device to circumvent it. One extension that should be fairly
immediate is to Orlicz-space type inequalities

f' t/J(!(PW)' (x) f{>n-
1/2(xW) dx

- 00

Here p ~ 1 and 1/1: [0, (0) ---+ [0, CJJ) is a convex function with 1/1(0) = O. The
only missing ingredient is an inequality of the form

fI/I(IUI P
) dO" ~ C f"" 1/I(lf(xW) dx,

- 00

valid for functions fE Lp(lR) with Poisson integrals U(z) in the upper half
plane, and for Carleson measures 0". Possibly interpolation could be used
to provide this missing step.

(d) The inequality (1.5) is almost certainly not true if we replace
(PW)' by P' W. In [9J, this was proved for p = 00, by nothing that if
T,,(x) = x" + ... E.?J" is an L oc extremal polynomial in the sense that

then at the largest point of equioscillation of Tn W, (n say, we have

while

( (
log n)2/3)

(,,=an 1+0 -n- .

(e) The above result does not apply to Q(x):= lxi', IX ~ 1, since for
such Q, A = B = IX ~ I.
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By omlttmg an interval of length 2"an about 0, we can still prove an
analogue of Theorem 1.1:

THEOREM 1.2. Let W:= e - Q be as in Theorem 1.1, except that we only
require A, B>O in (1.3). Let ,,>0, and p~ I, and q>n be defined by (1.4).
There exists C> 0 such that for n ~ 1 and P E fYJ",

(1.7)

Note that Q'(O) need not exist for the weights in Theorem 1.2, whereas
for the weights in Theorem 1.1, we have Q'(O) = O. As indicated by the La;
inequalities in [9J, the L p inequalities over [-wn, eanJ have a different
form to that in (1.7), but we shall not dwell on this point here.

The paper is organised as follows: In Section 2, we prove Theorems 1.1
and 1.2, but leave several technical details to later sections. In Section 3, we
estimate the Carleson norms of certain measures (Jn' thereby proving
Lemma 2.4. In Section 4, we prove Lemma 2.1, which relates certain entire
functions to the weight W. In Section 5, we fill in some missing details in
Lemma 2.2, concerning certain analytic functions and the weight W.
Finally, in Section 6, we estimate the derivative of a certain quantity,
establishing the last technical detail used in Section 2.

2. THE PROOF OF THEOREMS 1.1 AND 1.2.

We break this into several steps:

Step 1.

We replace the weight W locally by an analytic one.
Given x E IR, set

HAz) := e - [Q(x) + Q'(x)(z - x)], ZEC. (2.1 )

Since HljJ(x) = w<JJ(x),j=O, 1, we obtain by Cauchy's formula,

, ,If PHAz)
(PW) (x)=(PHx) (X)=2ni Iz-xl~' (z_x)2 dz,

for any polynomial P and for any e > O. Assuming P has real coefficients,
we obtain that

1 fnI(PW),(x)1 ~- I(PHx)(x+eeiO)1 de.
ne 0

(2.2)
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The choice of C is suggested by (1.4), (1.5). For x E ~ and n ~ 1, set

(2.3 )

Note that uniformly for n ~ 1 and x E ~,

LEMMA 2.1. Let cn(x) be defined by (2.3) and assume the hypotheses of
Theorem 1.1. Then there exists C> 0 such that

(2.4)

for all n~ 1, eE [0, n] and for all xEln, where

(2.5 )

If Wonly satisfies the conditions of Theorem 1.2, (2.4) holds for the range
In n {x: Ixl ~ '1an}, any fixed 0 < '1 < 1.

Proof See Section 4. I

Replacing C in (2.2) by Cn as defined in (2.3), applying Holder's
inequality, and then integrating over In' we obtain, by (2.4),

f I(PW)' cnl P dx ~ C f {f IP(x + cn(x) eiO
) W( Ix + cn(x) ei81W de} dx,

I n I n 0

(2.6 )

Step 2.

Our next step is to replace W globally an analytic weight.
This construction is well known (cf. [12, 14, 15, 19]), but for the reader's

convenience, we provide some details of proof of the following lemma in
Section 5.

LEMMA 2.2. Assume the conditions of Theorem 1.2. Then, given n ~ 1,
there exists a function G, that satisfies as following:

(a) G is analytic in Il:\L -an' an], with a simple zero at infinity, and
satisfies

G(i) = G(z). (2.7)
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Moreover G has boundary values G(x ± iO) that are continuous on
(-an, an)\{O} and that satisfy

Moreover,

IGn(x ± iO)1 = W(x), (2.8 )

(2.9)

(b) If W satisfies the conditions of Theorem 1.1, then there exists
C > 0, independent of n, such that

(2.10 )

for all xEJn and BE [0, n]. If W only satisfies the conditions of
Theorem 1.2, then given °< '1 < 1, (2.10) still holds (with C = C( '1» for
XEJnfl {x: Ixl ~'1an}'

In the sequel we assume that W satisfies the conditions of Theorem 1.1.
Applying (2.10), we deduce from (2.6) that

f I(PW)'{x)Bn(xWdx:::;;C f r I(PGn)(x+Bn(x)e i8 WdBdx. (2.11)
~ ~ 0

Next, let us introduce a positive measure d(Jn on the upper half plane,
that is defined by

(2.12 )

where S is any Borel set in the upper half plane, and Xs is its characteristic
function. With this definition, we rewrite (2.11) as

f I(PW)'{x) Bn(XW dx:::;; C f IPGnlP d(Jn'
J.

(2.13 )

Step 3.

The next step involves the notion of a Carleson measure.
This is a positive measure d(J on the upper half plane, that satisfies for

some C>O,

(J(K,o. h):::;; Ch,

for any square Kxo•h of the form

(2.14)

(2.15 )
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where Xo E IR, h > O. Note that these squares have base on the real axis and
lie in the upper half plane. The smallest constant C in (2.14) is called the
Carleson norm N( a) of a.

We also recall that the Hardy space HP, 0 < P < 00, on the upper half
plane consists of all functions f analytic there and satisfying

Any fE HP has non-tangential boundary values f(x), as z -> x from the
upper half plane, for a.e. x E IR, and there holds

Ilfll ~p:= fXl If(xW dx.
- 00

The following result is due to L. Carleson. For the proof, see
[6, Thm. 5.6, p. 33, and Thm. 3.9, p. 63]:

LEMMA 2.3. Let da be a Carleson measure and 0 < p < 00. Then there
exists a constant Cp > 0, depending only on p, such that for any fE HP,

It turns out that

f Ifl P da ~ Cp N(a) foo If(xW dx.
- 00

(2.16 )

LEMMA 2.4. The measure da", as defined in (2.12), is a Carleson
measure, and its norm N(a,,) is bounded from above by a constant
independent of n.

We prove Lemma 2.4 in Section 3. Now, let us return to (2.13). Since G
has a zero at infinity, and more precisely is O(I/z) there, the same is true
for PG", provided P E &:. _I' So PG" E HP for any p > 1. (If p = 1, we would
need to take PEP" _ 2)' Applying Lemma 2.3 and Lemma 2.4, we may
replace (2.13) by

f I(PW)'(x) e,,(xW dx ~ C IX IPG"I P dx,
I n - 00

Step 4.

We replace PG" by PW in (2.17).

PE&:'_I' (2.17)
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Now we are almost done. Since PG" is analytic in C\[ -a", a,,] and
vanishes at infinity, a simple application of Cauchy's formula yields

(2.18 )

This relation is classical, but in the context of orthogonal polynomials on
IR, was first used by E. A. Rahmanov.

Let us define

From (2.18), we see that the restriction of PG" to (- 00, -a,,) u (a", (0) is
the Hilbert transform of the function

f(t):= {Im(PG")(I),
0,

IE(-a",a,,)

It I>a"

The latter belongs to L p (lR) any p > 0, and since the Hilbert transform is
a bounded operator in L p (IR), for p> 1, we conclude (recall (2.8)) that

f jPG"jP dx ~ c f IPWjP dx.
R R

Thus (see (2.17)), we have proved that

J l(pw)'(x)e,,(xWdx~CJ IPWIPdx,
~ R

p> 1.

(2.19 )

(2.20)

We proceed to prove (2.19) for the exceptional case p = 1: As the Hilbert
transform is not bounded from L[(IR) to L 1(1R), we proceed a little
differently. Let

Z {(Z)2 }1/2
ljJ(z) := a" - a" - 1

denote the conformal map of C\[ -a", a,,] onto {w: Iwl < 1}. For a given
P, we introduce the Blaschke product

B(z) :=n ljJ(z) -1jJ(lY.j ) ,

l-ljJ(z)ljJ(rx)

taken over all zeros IY.j of P (according to multiplicity) in C\[ -a", a,,].
(We take the product to be 1 if P does not vanish in C\[ -a", an].)
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Then PGn/B does not vanish in C\[ -an' an], so we may consider a
single-valued branch

Since IBI = 1 on [ -an' an] and IBI < 1 in C\[ -an' an], we obtain

Assuming PEgiI,,_2' we see that g(z)=O(ljz) as z--> 00, so that gEH2. As
before, we see that the restriction of g to (- OC, -an) u (an, 00) is the
Hilbert transform of the function

II(t) := g~ g(t + iO), tE(-an,an)

It I> an'

Then Carleson's theorem, followed by the boundedness of the Hilbert
transform in e(IR), give

flgl 2 dO"n ~ C1 IX Ig(t + iOW dt
- oc'

~ C2rn

Ig( tWdt
- an

~ C3rn

IPWI(t) dt.
- an

Again, we have (2.19) and hence (2.20).

Step 5.

We estimate the tail of the integral.
More precisely, we estimate II(PW)' 8 n II Lp(1;l \Jnl' With Wreplaced by Gn,

this is easy. By (2.18), (2.8), we have for x¢.Jn ,

I(PGn)' (x)1 ~ ~rn

I(PW)(t}1 dt.
n - an (t - x)

Therefore, Holder's inequality, and then integration with respect to X,

yields with q = pj(P - 1),

Since Ix±anl ~ann-2/3 for xEIR\Jn, a simple calculation of the double
integral in {} yields O((an n- 2/3)-P), provided p> 1. For p= 1, trivial
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modifications are required, giving the same answer. But Bn(X) = ann - 2/3 for
XE IR\Jn , so that we obtain

f. I(PGnrBnIPdx~Cf IPWIPdx.
~\~ ~

Finally, write

(PW)' = ([PGn][WjGn])' = [PGnr [WjGn] + [PGn][WjGnr.

In Section 6, we prove that

(2.21 )

(2.22 )

Now, (2.19), (2.21), (2.22) (and (2.8), (2.9)) yield

and (recalling (2.20)) the proof of Theorem 1.1 is completed.

Remark. In the last step, we assumed that P E fP" _l' Thus, we should
have above lin _ 1 (x) instead of lin(X). However an/an _ 1 = 1+ O( Ijn) for
n ~ 1 (see, e.g., Lemma 5.2 in [10, p. 478]) and therefore

uniformly for x E IR and n ~ 1.

3. PROOF OF LEMMA 2.4

We first note that (2.3) implies in particular that

1 (IXI .) - 3/2 1
Ili~(x)I=- 1__+n- 2/ 3 <-

2n an 2

for 0 < Ixl < an' Therefore,

X, yE IR. (3.1 )

Now, fix a square K,o. h of the form (2.15). A necessary condition for the
semicircle

to intersect K xo , h is
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This implies, by (3.1), that
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that is

(3.2 )

Next, r x n K xo • h consists of at most two arcs, and as each such arc is
convex, r x n Kxo • h has length at most 4h (of course, this is a very crude
estimate). Therefore, the total angular measure of r~ n K xo • h is at most
4hjen(x). Obviously, it does not exceed n as well. Taking into account (3.2),
we obtain, by the definition (2.12) of an, that

an(K~O.h)~f min{n, 4hlen(x)}dx. (3.3)
Ix - xol .;; h + 2en(xol

We distinguish two cases:

Case I: h ~ en(xo). Then the integral in (3.3) is taken over an interval
of length ~ 6h, so that

Case II: h < en(xo). Assume first, that

Then a straightforward calculation (recall (2.3» yields

f f~o + 3enL~o l

Ix ~ xol.;;h + 2enL~ol 4hlen(x) dx ~ xo _ 3F.
n
(xoJ (4hle n(x» dx

2 {( 3 )3/2 ( 3 )3/2}=4h· 3R 1+R - 1- R '

where

(

X )3/2
R := n 1- a: +n-213 ~ 8,

(3.4 )

(3.5 )

by (3.4). Thus, the integral (3.5) is ~ Ch, for some absolute constant C.
If X o> an ( 1- 3n - 2/3), then the integral in (3.5) is taken over an interval

of length 6en(xo)~ 6 ann - 2/3, while en(x) ~ C ann - 2/3 in this interval
(see (3.1), and recall the definition of en(x». Thus, we again obtain the
bound Ch for the integral (3.5). The case Xo ~ 0 is treated similarly.
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4. PROOF OF LEMMA 2.1
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The proof of Lemma 2.1 is contained in our paper [9]. However, it is
spread over several places there, and is carried out for the general case
A > 0, which does not make for easy reading. Therefore we present the
proof (albeit a sketchy one) for the case A > 1.

First, we collect some properties (cf. [9, Lemma 3.1]) that follow easily
from (1.3), with A> 1:

Q'(x) ~ Q'(I) x A
-I, XE (0, 1]. (4.1 )

Note that this implies that Q is differentiable at 0 and Q'(O) = o.

Q'(x)j 00 as x -+ 00. (4.2)

(4.3 )

uniformly for x E [a, b], any fixed a, b > O. We deduce from (4.2), (4.3) that

an/n = 0(1), n -+ 00, (4.4 )

It is also shown in [9, Lemma 3.1] that

t A ~ (xtQ'(xt))/(xQ'(x)) ~ tB
, X E (0, 00), t E (1, 00), (4.5)

and

A ~ xQ'(x)/Q(x) ~ B, x E (0,00). (4.6 )

Now, let

z :=x+t:eilJ
, t::=t:n(x).

By the definition (2.1) of H x , we obtain

IHAz)/W(lzl)1 = exp(Q(lzl) - Q(x) - Q'(x)(Re z - x))

= exp(Q(lzl) - Q(x) - Q'(x) HOS 0) =: eY. (4.7)

To prove (2.4), it suffices to show that y = O( 1), uniformly for x E I n and
z of the above form.

Case I: 0~x~4an/n. Then by (4.4),x=0(1). Also,

in the range considered. Thus y in (4.7) is o( 1).
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x (X )1/2x/e=n- 1 __ +n- 2/ 3 >2.
an an

By Lemma 2.1 in [9, p. 1069],

y ~ C(2x) Q'(2x)(e/(x - e)f ~ C I Q'(2x) e2/x. (4.8)

Applying (4.2), (4.3), we obtain that

Since

in the range considered, we obtain

y=O(I).

Case III: an/2~x~2an" Since en(x)~ann-2/3, xEIR, we see that
x/e > 2 for the present range as well. Then (4.8) yields

y~ C!!....~ a~ n - 4/3 = Cn -1/3.

an an

5. PROOF OF LEMMA 2.2

We begin with

LEMMA 5.1. Assume the conditions of Theorem 1.2. Define for
xE[-I,I]\{O}, n:>l,

Then fln(x»Ofor xE(-I, 1)\{O} and

r fln(X) dx = 1.
-I

Next, for Z E iC, let

f
I 1 I

Un(z) := log Iz - tl fln(t) dt - - Q(an1 zl) + - Xn'
-1 n n

(5.1 )

(5.2)

(5.3 )
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where

Then Un is an even continuous function in C and satisfies
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UAx)=O,

Un(x) <0;

X E [-1,1);

U~ (x) < 0, X E ( 1, CXJ).

(5.4 )

(5.5 )

Furthermore for some C 1 , C 2 , 15 0 ,

15 E [0, 150 ), (5.6)

and given K>O, there exists C 3 =C3(K) such that

x~1+K. (5.7)

Proof See [12,pp. 37-39,45,55]. I

Now we can give an explicit expression for the function G discussed in
Lemma 2.2. Set

where log denotes the principal branch. Note that (5.2) ensures that G is
single-valued in C\[ -an' an) and that it has a simple zero at infinity.
Since Iln(t) is real-valued, we also obtain G(i) = G(z). Next, by (5.3), (5.8),
we have

(5.9)

Therefore, (2.8), (2.9) follow by (5.4), (5.5), so we have completed the
proof of part (a) of Lemma 2.2. We turn to the proof of part (b). In view
of (5.9), we need to show that nUnez/an) is bounded from above, for the
relevant range of z.

LEMMA 5.2. Assume the conditions of Theorem 1.1, and let °< 1'/ < 1.
Then for t E [0, 1) and for n large enough, there holds:

640'77,'3-2

Un(s+it)~Clt, SE[O,1'/);

Un(s + it)C2 max {t 3
/
2

, t( 1- S)I/2},

Un(s + it) ~ C 3(t 3
/
2

- C 4 (s - 1)3/2),

SE [1'/, I);

sE[I,2].

(5.10)

(5.11 )

(5.12)
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Furthermore, (5.11 ), (5.12) hold if W only satisfies the conditions of
Theorem 1.2.

Proof The above estimates are contained in [9, Lemma 4.2, 4.3, 4.4].
For the reader's convience, we prove (5.10), since this inequality was stated
in [9, Lemma 4.2] in a different form. By (5.3), (5.4),

Un(s+ it)= Un(s+ it)- Un(s)

=~(llog(l +C~uY)Jln(U)dU

+ {Q(anlsl) - Q~an(s2 + t2)1/2)}

~ ( log (1 +C~ uY) ILn(u) du, (5.13)

by monotonicity of Q and evenness of ILn' Next, by Lemma 4.1 in [9J,

XE[I'/,l], (5.14 )

and

XE (0,1'/], (5.15 )

where

The substitution u = ant yields

t/Jn(X) = an f20. Q'(u) du = 0(1),
n anx U

by (4.1) and (4.5). Thus,

ILnCx)~C~1-x2, XE [0, IJ,

and we deduce from (5.13) that

Un(s+ it)~ C 1 flog (1 + C~ur) duo

The substitutions s - u = ty gives

Un(s+it)~CltIoo

Jog(1+y-2)dy~C2t. I
-ex;

(5.16 )

(5.17 )
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Now we can prove the inequality (2.10) in part (b) of Lemma 2.2. By
(5.9), it is equivalent to

(5.18 )

for all s, t of the form

(5.19 )

Case I. 0 ~ x ~ ~an' Then en(x) ~ C an/n, so that 0 ~ s ~ 1/2 + Cjn, 0 ~
t ~ C/n. Applying (for n large enough) (5.10), we obtain (5.18).

and since

(see the definition (5.19) of s), we obtain

Applying (5.11), we again obtain (5.18).

Case III. an~x~an(l+n- 213 ). In this case, we apply (5.12) and get
(5.18 )

This proves (5.18) for x> O. Since U(z) = U(z) and U is even, the proof
of (5.18) is complete. Note that (5.11), (5.12) hold also if Wonly satisfies
the conditions of Theorem 1.2 (see the last assertion of Lemma 5.2). This
concludes the proof of Lemma 2.2.

6. PROOF OF (2.22)

For x~an(l+n- 2
/
3

), we deduce from (5.9), (2.3) that
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We consider three ranges of x:

Case I. an(1 +n-2/3)~x~an(l +15), some small enough 15>0. Then
by (5.6),

Also (cf. [12, pp. 39, 55]),

for the range considered. Therefore,

ILlI ~ C3 n 1/3(x/an - 1)1/2 exp( - C I n(x/an - 1)3/2)

= C3 R I / 2 exp( - C 1 R 3
/
2

),

where

So,

Case II: an(1 + 15) ~ x ~ Ka n , some K> 0 large enough. Here

(6.2)

(6.3 )

by (5.5), and

U~ (x/an) = r (x/an - 0-- I J1nU) dt - an Q'(x lin. (6.4)
-- I

Since

for the range considered (see (4.3), we see that

Thus again

Case III. x~Kan' Since Q(an)~n (by (4.3», we have

1
- Xn = 0(1),
n



L p MARKOV-BERNSTEIN INEQUALITIES

by the definition of Xn in Lemma 5.1. Then (5.2), (5.3) imply that

1
Un(xjan) ~ log(xjan-1) -- Q(x) + 0(1).

n

Now by (4.3), (4.5), and (4.6),

1 XQ'(X) (X)A
- Q(x) ~ Cg '( ~ Cg - ~ 2 [log(xjan- 1) + 0(1 )],
n anQ an) an

for x ~ Ka n , K large enough, so

Also, by (6.4),

IU~(xjan)1 ~ C9 + anQ'(x)jn ~ C9 + C/O an Q(x)j(nx) ~ ClIQ(x)jn,

by (4.6). Therefore

IAI ~ C l2n 1/3 . (Q(x)jn) . e - Qlx)/2

~CI2n-2i3. Q(x)· e-QIX)~C13'
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